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FIG. 1. a) Typical snapshot of a DEM simulation, with
Hi = 30d and ✓ = 24�. The color code indicates the ve-
locity v(z). b) Volume fraction � as a function of the inertial
number I = �̇d

p
⇢/P . An a�ne law (solid black line) is fit-

ted to the data. Results from previous works [15, 16] are
also shown for comparison. c) Incline angle/macroscopic fric-
tion coe�cient, µ as a function inertial number I, obtained
from DEM simulations with various inclination angles ✓, ini-
tial layer thicknesses Hi for frictional and frictionless grains.
Results from previous works [1, 16] are also shown for com-
parison. d) Same values, shifted with respect to the critical
friction coe�cient, µ�µc as a function inertial number I. The
solid/dashed line indicates the empirical relations µ�µc = bI

and µ� µc = bI
0.4, respectively. µc ⇡ ✓c = 0.35 for frictional

grains and 0.1 for frictionless grains.

observe that: i) there is a minimum critical angle to ob-
serve flow for dense granular layers, ✓c ' 20�, related
to friction, even for frictionless grains (Fig. 1c, d); ii)
the local time-averaged velocity profile is well described
by a Bagnold profile hv(z) � v(0)i ⇠ H

3/2 � (H � z)3/2

(see Fig. S1a in [21]); iii) the inertial number I (see
Fig. S1b in [21]) and the volume fraction � (see Fig. S1c
in [21]) remain mostly constant throughout the layer for
all the studied inclination angles. As proposed by Lois et
al. [22], I, µ = ⌧/P,� and the equation of state (EOS),
Pd

3
/�T are a good choice for the dimensionless param-

eters in the problem (T represents an e↵ective thermal
energy related to mechanical noise). In other words, fix-
ing one dimensionless parameter determines the value of
the three remaining ones. At first sight, the EOS is re-
dundant as a dimensionless variable but considering this
relation shed some light about the microscopic processes
at work. Since µ is constant for an inclined-plane ge-

ometry with fixed angle ✓, I,� and Pd
3
/�T should also

be constant in the layer and fully determined by the pa-
rameter ✓ ' µ as confirmed for I,� in DEM simulations
(see Fig. S1c in [21]). The two main relations describ-
ing the average/mean-field flow properties are i.e. µ(I)
for the flow velocity and the dilatancy law �(I). They
are assumed to be monotonic functions typically con-
structed empirically [2, 8, 23]. In agreement with pre-
vious works [1, 4, 15, 16, 24–26], Fig. 1d confirms that,
for moderate incline angles, the macroscopic friction co-
e�cient µ ' ✓ grows linearly with the inertial number,
µ = µc + bI, and that the packing fraction of the flowing
layer � is well fitted by � = �c � cI, where �c = �(✓c) is
the volume fraction at kinetic arrest (b, c are constants).
For large inclination angles, large deviations from the lin-
ear behaviours are observed and related to a change of
state, from dense fluids to gazeous. The friction and di-
latancy laws remains identical for all values of friction
coe�cient with di↵erent values of µc and �c. The criti-
cal friction coe�cient µc is related but not equal to the
microscopic friction coe�cient.
Fig. 1d also shows that the macroscopic rheological

laws becomes, µ = µ0+bI
0.5 for frictionless grains [4, 24].

Frictionless systems thus exhibit a singular rheological
behavior. The origin of the critical friction µ0 ' 0.1 for
frictionless systems remains controversial but there is a
consensus to consider that it is related to the topography
of granular surfaces. The dilatancy law shown in Fig. 1 b
is described in [24] by the relation �

�1 = �
�1
0 +cI

0.4 with
a critical packing fraction very close to the random close
packing fraction, �0 ' 0.64. It should be noted however
that the same data in the intermediate range of inertial
numbers can be fitted with another expression, close to
the one observed for frictional grains, � ' 0.63� c I.
To give an insight into the microscopic origin of these

laws, we should focus on the internal dynamics of the
system at the grain size. As proposed by several au-
thors, the velocity fluctuations and the di↵usion coe�-
cient of grains are strong indicators of the grain’s dy-
namics [27, 28]. The e↵ective thermal energy T is re-
lated to the mechanical noise. A dense granular flow is
characterized by very rapid collisions involving sudden
changes of the velocity direction and the contact net-
work. Assuming that all these events occur at a high
frequency compared to the evolution of mean-field quan-
tities, they can be rationalized through a granular tem-
perature [22]. A reasonable assumption is to consider
that this temperature is related to the local velocity fluc-
tuations, through the relation T (z) ⇠ m�v

2(z), with
�v

2(z) = h[v(z)� hv(z)i]2i = hv(z)2i. Fig. 2 b shows the
evolution of the dimensionless velocity fluctuations with
the inertial numbers for frictional and frictionless grains,
the natural value of velocity fluctuations being given by
d�̇. First, the dimensionless velocity fluctuations ob-
served here and for all reported studies collapses on a
single curve showing a decrease of the fluctuation when I


